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ABSTRACT
Supervision and teaming with automated systems increase in dif-
ficulty as the number of automated systems increases, which is
becoming more and more common with improvements in artificial
intelligence and growing accessibility of these devices. It is difficult
for people to manage multiple systems and most current interfaces
do not scale well to larger teams. Augmented Reality (AR) can place
information on top of the real world allowing users to track the
environment and the robot at the same time–perhaps improving
the scaling of these devices. To further investigate the user interface
scaling in AR, we implement two modes of a gaze-based interface:
active and passive. Gaze is a powerful indicator of attention and
may create more reactive systems that can reduce the cognitive
burden of a user. In the active mode, the user looks at a menu and
presses a button to request additional information. The passive
mode does not require active effort from the user, instead switching
the menu when the user’s gaze dwells on the menu for a set amount
of time. We implement a user study where participants perform a
visual search task and provide feedback on their user preferences.
Results show that the passive and active interfaces provide better
scaling as the number of robots increases. However, users slightly
prefer the passive interface for its low mental demand, effort, and
frustration.
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• Human-centered computing → Mixed / augmented reality;
Graphical user interfaces; User studies; HCI theory, concepts
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1 INTRODUCTION
Technology is becoming ever present around us - no longer is
computing limited to specific devices, but is now in items like coffee
makers and even planters. As these devices begin to incorporate
computing – their functions and features become more advanced.
We now have robots that can vacuum and mop autonomously, and
drones that can follow you and record a video of you skateboarding.
While this connectivity and computation make them more capable
than ever, it also changes the nature and means of interaction and
feedback from these devices. A vacuum is no longer a simple on and
off device that you drive around - instead it can be scheduled and
must navigate around obstacles in a room, and notify you when it
has trouble doing so. For human interaction with robotics, this leads
to an “automation conundrum” [5] - where a human’s knowledge of
a systems status tends to decrease as system automation increases.

Novel means of interaction, such as Augmented Reality (AR),
offer away to interrogate and understand the status of these systems
at a glance. By overlaying digital information on the physical world,
AR augments a user’s gaze with additional information. However,
as the number of devices within a user’s area increases, they can
quickly be overloaded with information and find the digital world
overtaking the physical. This can not only create emotional stress,
but also overload an individual’s visual processing system, making
tasks such as visual search take longer.

Figure 1: Simulated drones floating with the dense menu
above them.
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Eye-gaze offers a potential way to mediate the glut of informa-
tion. By using eye-gaze as a proxy for attention and interest, the
amount of information shown to an individual can be increased
where their attention is focused, and limited otherwise. Compared
to a traditional gesture or selection technique, this offers a much
faster response to a change in the user’s attention. Simultaneously,
it potentially allows users to find information faster by limiting
the amount of data they visually must sort through, especially in
situations where the number of objects in their view is large.

In this paper, we focus on how an eye-gaze based information
mediation interaction can reduce task time and cognitive burden
for end users in augmented reality. We developed two different
interactions - a passive and active interaction. In the case of the
passive interaction, information is limited to the name of a device,
and only after a certain dwell time, is additional information about
that device shown. In the active condition, a user looks at a device
and then clicks a button to show additional information about that
device. We then constructed a visual search task using a Microsoft
HoloLens 2 that compares these two interactions versus a situation
where all the information about a set of devices is shown. We
performed 21# trials per participant that increases the number of
devices in their field of view where they must find a specific piece
of information from a particular device.

Both the active and passive interactions improved performance
time over a traditional interface, shown in Figure 1, as the number
of robots increased; the gaze interfaces scale better with larger robot
teams. Participants prefer both of the gaze-based interactions over
the traditional method with a preference towards the passive inter-
action, even though it did not improve performance quite as much
as the active interaction. Users expressed a wish for customizing
the passive dwell time setting.

2 RELATEDWORK
Gaze is appealing as an interaction technique because it is fast,
hands-free, and is naturally employed during perception. Researchers
have widely investigated gaze in typical, two-dimensional user in-
terfaces as discussed below, but investigations of gaze-based sys-
tems with robotics and AR are burgeoning and primed for design
guidelines.

For this effort, we discuss related works in human-computer
interfaces, gaze-based or scalable robotic interfaces, and AR robotic
interfaces.

2.1 HCI
Most two-dimensional computer interfaces incorporate naviga-
tion and selection as the main control methodologies [8]. Gaze
movement naturally aligns with navigation, but selection remains
difficult.

Human-computer interaction researchers have long been inter-
ested in gaze for interfaces as gaze is hands-free and swift. Still,
gaze is tricky to use because, as Zhai et al. note, “it is unnatural to
overload a perceptual channel such as vision with a motor control
task" [18]. For instance, a user may accidentally trigger a dwell se-
lection while they are resting their eyes and not looking at anything
in particular or may be trying to trigger a selection when their eyes
are drawn to periphery movement. These scenarios are part of the

“Midas Touch" problem of user interfaces–a user interface needs
to balance being too easy and too difficult to trigger or users may
choose not to adopt the system [10].

To circumscribe these issues, Zhai et al. created a dual-modality
gaze and button clicking system to [18] employ gaze for navigation
but not selection. The Manual and Gaze Input Cascaded (MAGIC)
pointing system follows the user’s gaze direction for navigation
but reverts to manual device input for selection. One version of
the gaze-based system allowed participants to click on appearing
targets faster than a traditional point-and-click interface.

In later works, Zhai again recommended the use of gaze in atten-
tive, or implicit, interfaces that did not require the user’s active gaze
effort [17]. Wang, Zhai, and Su created an eye-typing interface that
combined gaze direction with a space-bar press to select a Chinese
character from a suggested list created typing speeds comparable
to a traditional system [15].

2.2 Robotic Interfaces
Humphrey et al. employ a “halo" display to help users manage teams
with increasing numbers of robots [9]. The display shows the feed
for one specified robot along with a halo of arrows that point to
the locations of the other robots with respect to the current one.
The results did not confirm if the system helped with scalability or
not as there was no comparison interface.

Yu et al. try gaze-based drone teleoperation with a laptop in-
terface [16]. Users could control the robot either by dwelling on
six specified areas of the screen to move the drone in the corre-
sponding direction (left, right, up, down, forward, backward) or
could implement gaze gestures, or sequential movements between
locations, to select a direction. Neither gaze method outperformed
keyboard or joystick control. Participants struggled to remember
the gaze gestures and the dwell methods resulted in many false
positives.

2.3 AR/MR Robotic Interfaces
The Augmented Robot Environment (AugRE) [12] functions as a
status monitor for human-robot teams. The system provides local-
ization and communication between robot teams and users wearing
Microsoft HoloLens 2 headsets. In theory AugRE is more scalable
over a traditional interface because it reduces context-switching,
but this has not yet been explored.

Ruffaldi et al. create a system that reduced teaming inefficiency
between a participant and a flying drone by communicating the
drone’s intent to the user so the user could adjust their plan accord-
ingly [13]. They did not consider scalability and tested the system
with only one robot.

Hedayati et al. seek to improve drone teleoperation with AR
visual overlays that show either the drone’s field-of-view or camera
feed [7]. These overlays improved performance time and accuracy
over existing tablet software, though researchers did note that “par-
ticipants preferred designs that moderately improved performance
over the best-performing design."

Other researchers implement AR cues to improve teleoperation
of a co-located robot manipulator [1]. Teleoperation by itself is
inherently not scalable, although teleoperation takeovers of au-
tonomous systems could have scaling capabilities.
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3 INTERFACE DESIGN
In this work, we explore how gaze can be leveraged to reduce
information overload in a scenario where AR is used for interacting
with a large number of autonomous systems. For the design and
implementation of the interface and study, we utilized a Microsoft
HoloLens 2 as the AR platform. In order to simulate interaction
with robotic assets in a space, we leverage the AugRE platform
[12] to manage the visualization and display of robotic information.
We manipulate the menu showing the robot data, creating three
interface designs for the study:

• Simple
• Passive
• Active

3.1 Simple Interface
The Simple Interface acts as the control for this study. It shows
all the information about a robot with no additional eye-based
information mediation. This menu can be seen in the right side
of Figure 3. The top left of the menu displays the robot’s name
and there are six categories of information below on the left with
their details on the right. The Distance category includes dynamic
information to more closely represent a changing robot status.

3.2 Passive Interface
The Passive Interface incorporates lessons learned from the related
works in an implicit design. As shown in Figure 3, the menu first
shows only the robot name: the “Sparse Menu." After a user’s gaze
dwells on themenu for 1.5 seconds, themenu switches to the “Dense
Menu" with all of the information. The Sparse Menu returns when
the user is no longer looking at the Dense Menu (no intersection of
gaze with the menu for 0.5 s). The text for the robot name is the
same size on both the Sparse and Dense menus to eliminate effects
from text size on the performance time compared to the Simple
interface.

Figure 2: The sparsemenu and its intersection with the user’s
gaze vector (red, shown for visualization purposes).

Figure 3: Depiction of the menus and the conditions that
prompt a transition.

The 1.5-second-dwell was informed by the literature and initial
testing. Bafna et al. led an eye-typing study and found typing speed
to increase with an increased dwell time, while errors increased
[2]. The best performance occurred with dwell times of 350 - 450
ms (tested range of 250 ms to 1150 ms). We provided additional
time for users to read the two words on the initial menu. Research
shows the average reading rate is around 238 words per minute [3],
or about four words per second. We doubled this time to account
for the moving menus and increased difficulty while reading from
an AR device.

To provide the user with indicator of where they are currently
looking, as long as the progress of the interaction, the outline of
the menu begins to darken as the user dwells on the Sparse Menu,
shown in Figure 2.

3.3 Active Interface
The Active Interface demonstrates an explicit UI design; the user
must actively press a button to receive more information; in this
case, the button is the red “B" button on the front of an Xbox con-
troller. Otherwise, this interface functions similarly to the Passive
Interface, except the trigger condition is a user looking at a menu
and simultaneously pressing a button on a controller, shown in
Figure 3, and the interface switched back immediately once the
user averted their gaze from the menu. The menu outline turns red
when the user is looking at a menu to give visual feedback.

4 EXPERIMENT DESIGN
This research seeks to understand 1) the impact of the interface
on users seeking information, 2) the effect of the interface on the
scalability of robot teams, and 3) user preferences between the
different interfaces.

Regarding the first goal, we utilize a standard visual search task
similar to [14] or [11]. Participants are instructed to seek out specific
details from the interface, e.g. the Drive details (in Figure 3, Legal).
The system measures the time for each trial to see if there is an
impact of the interface on the user’s ability to quickly find the
relevant information. To minimize the effect of reading times on
the results, the words are chosen from a word bank of five-letter
words, listed in Appendix A.

The trial is designed to stay within a person’s working memory
limits [4]. The users must remember a robot name and an informa-
tion category in addition to the menu interaction.
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Figure 4: The trial start menu.

Participants first view a starting menu, in Figure 4, that lists
the interface and the requested information for the trial. To start
and stop the trial, the users press a trigger on an Xbox controller.
Participants report the information to the study lead after they end
the trial.

These interfaces appear as a menu floating above a robot, much
like as in [12]. The robots in the trials are simulated drones, shown
in Figure 5. The drones drift slowly around the scene as they move
from one random nearby point to the next.

Regarding the second goal, participants complete multiple trials
for each interface with sets of 1, 5, 10, 15, 20, 25, and 30 robots and
sought the details from one specific robot (in Figure 3, Robot:Craft).
The drones start in random sections of a 5x6 vertical and horizontal
grid 5 meters in front of the participant as in Figure 6. Initial results
with the robots circling the user showed that the robot starting
position dominated the performance time and hid effects from
the interface. The randomized robot location aims to minimize
further effects from robot starting position. The 30-robot maximum
was intended to capture a reasonable maximum number of robotic
teammates while being large enough to invoke cognitive overload
in participants.

Finally, participants answered surveys to reveal their preferences
between the interfaces. Participants fill out four surveys: three
surveys based on the NASA-TLX scale for each of the three different
interfaces [6] and one final survey with Likert-scale responses
comparing the different interface modalities and long-form answer
questions. B

Figure 5: The simulated drone design.

Figure 6: The grid for robot placement.

To account for learning effects, the order of interfaces was coun-
terbalanced across all participants. Within the set of trials for each
interface, the participants first completed a practice trial to further
reduce learning effects and then completed the rest of the trials
in that interface in a randomized order. Participants filled out the
NASA-TLX survey for each interface directly after each set of trials
while the experience with that interface was recent.

5 RESULTS
We recruited 16 participants (12M | 4F) with ages ranging from
19-36 (25.75 +- 4.75 years). All participants save one had previous
AR experience, with phone-based games such as Pokémon Go or
even a Microsoft HoloLens 2. This study was approved by the
ANONYMIZED FOR REVIEW IRB under Study Number STUDY
NUMBER.

We applied a Mixed Linear Model to the dependent variable of
trial time with the interface order, the number of robots, the type
of interface, and the number of robots plus the interface type as
independent variables. This analysis excluded five outlier trials with
times greater than three standard deviations from the average trial
time. Excluding these outliers, the average trial times were: Simple
interface - 10.6 s, Passive interface - 9.0 s, and Active interface 8.7 s.
The Active interface resulted in 1.9-s improvement over the Simple
interface and the Passive has a 1.6-s improvement.

For all of the analysis, we set the significance level to 𝑝 = 0.05.
There was no significant dependence between the interface order
or type of interface and trial time. When the previous variables
are removed from the model, the number of robots was significant
(𝑝 = 0.000) and so was the Active interface compared to the Simple
interface including number of robots (𝑝 = 0.002) and the Passive
interface compared to the Simple interface including the number
of robots (𝑝 = 0.010). The average trial time for each interface with
increasing numbers of robots are shown in Figure 7.

Trials with the incorrect answer were excluded from the results.
There were 22 trials with incorrect answers, all noted in Table
1: six from the Simple interface, eight from the Passive interface,
and eight from the Active interface. Some participants noted that
it was difficult to remember which details they needed to report;
participants gave the details for the correct robot but wrong details
category for 15 of the 22 incorrectly answered trials. During the
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Figure 7: Average trial times versus number of robots for
each interface type.

Table 1: Trials with Errors

Interface Simple Passive Active

1 robot 2 1 1
5 robots 0 1 0
10 robots 0 1 1
15 robots 0 1 0
20 robots 3 1 1
25 robots 1 2 4
30 robots 0 1 1

trials, a few participants made verbal comments that the words
were similar and hard to tell apart.

Additionally, we explored the time to view the correct menu
once the trial started. We first removed outliers from the data. The
average time to view the correct menu is heavily dependent on
the number of robots and the number of robots plus the type of
interface (𝑝 = 0.000 for all). It took participants longer to find the
correct robot as the number of robots increased and the Active and
Passive interfaces decreased the time to find the correct robot as
the number of robots increased. The average trial times to find the
correct menu were: Simple interface - 7.8 s, Passive interface - 5.3
s, and Active interface 5.1 s. This shows that at least part of the
performance improvements with the Passive and Active systems
resulted from them enabling the users to quickly identify the correct
robot’s menu.

We defined false positives as when a participant viewed the
correct menu but looked away for longer than two seconds. We
detected 21 false positives over the trials: 15 for the Simple interface,
5 for the Passive interface, and 1 for the Active interface. False
positives occurred more frequently with more robots and with the
Simple interface; this is summarized in Table 2.

Overall, the surveys revealed participants preferred both the Ac-
tive and Passive interface over the Simple interface, with a proclivity
for the Passive interface in particular.

Paired t-tests on the NASA-TLX survey data indicate that partic-
ipant responses were not statistically significantly different (𝑝 <

0.05) between the three interfaces for Physical Demand, Temporal
Demand, or Performance. Participants, however, did rate the Pas-
sive interface as less mentally demanding (𝑝 = 0.0010), requiring
less effort (𝑝 = 0.012), and less frustrating (𝑝 = 0.045) than the

Table 2: False Positives

Interface Simple Passive Active

1 robot 0 0 0
5 robots 0 0 0
10 robots 3 0 0
15 robots 1 0 0
20 robots 2 0 0
25 robots 2 2 0
30 robots 7 3 1

Table 3: NASA-TLX Survey Results

Interface Simple Passive Active

Mental Demand 5.625 4.1875* 4.4375*
Physical Demand 3.5 2.9375 3.5
Temporal Demand 5.3125 5.5625 4.9375
Performance 8.4375 8.4375 8.875
Effort 5.8125 4.75* 5.125
Frustration 4.125 3.0625* 3.375

Simple interface. Participants found the Active interface to also
be less mentally demanding than the Simple interface (𝑝 = 0.10).
Survey responses did not show a significant difference between the
Active and Passive interfaces on these measures. These results are
summarized in Table 3 where the categories in which an interface
outperformed the Simple interface are starred.

The final survey presented to the participants further supports
this interpretation. Out of the participants, 31.3% disagreed or
strongly disagreed that the Simple interface was intuitive. Mean-
while, all participants at least neutrally agreed that the Passive
interface was intuitive as summarized in Figure 8. This result was
statistically significant for Passive vs. Simple (𝑝 = 0.0063), but not
for the other combinations of interfaces.

Almost half of participants (43.8%) said they disagreed that the
Simple interface was easy to use, while none did for the Passive
interface. Only 12.5% of participants thought the Active interface
was not easy to use, shown in Figure 9. The Passive interface was
easier to use than the Simple interface (𝑝 = 0.0014), same with the
Active interface (𝑝 = 0.043).

We asked participants if they felt the interface made them feel
like they and the robots were part of the same "team". More people
said they felt like a member of the team with the Active interface
(𝑝 = 0.017) and Passive interface (𝑝 = 0.030) compared to the Simple
Interface, likely because the system responded to their input.

Only two participants said they preferred the Simple interface
over the Passive interface, but four said they preferred the Simple
interface over the Active interface. The results were split for Active
vs. Passive, with seven preferring the former and nine preferring
the latter, shown in Figure 10.

Participants found the Active and Passive systems responsive,
with none disagreeing with the statements: “The passive gaze sys-
tem correctly identified when I looked at a label" and "The active
gaze system responded when I asked to see more information."
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Figure 8: Responses to the survey intuitiveness questions.

Figure 9: Responses to the survey ease of use questions.

Figure 10: Responses to the survey interface preference questions.

Participants preferred the Passive interface over the Active inter-
face because: “ I had to do the least amount of work both in looking
for the robot (higher for simple) and in button presses (higher for
active)" and the Passive interface’s “simplicity." Opponents of the
Passive system disliked when its timing wasn’t quite right. “[T]he
passive gaze could sometimes give extra, distracting information
if my sight lingered for too long," one participant stated. Another
said, “I liked the active gaze the best... The passive gaze was also

good, though it was difficult to get the timing right. I.e. sometimes it
responded too quick before I could figure out the name of the robot
(especially for those further away)." Even advocates for the Passive
interface noted this as a downside, even if it wasn’t necessarily a
deal breaker, as one participant noted, “The passive gaze sometimes
switched to the details screen earlier than I expected to. That wasn’t
necessarily bad, just surprising the first time it happened." Another
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stated, “[I liked the] Passive interface, but it should not take too
long to show the details."

One participant verbally noted a tendency to avert their gaze
while pressing the Active interface button, which prevented the
switch to the more detailed menu and could further explain some
of the preferences for the Passive interface. The Active interface
could have a delay on the switch back to the sparse menu, similar
to the delay on the Passive interface.

6 DISCUSSION
Overall, the results indicate that eye-gaze based interactions can
help to improve visual search performance in an augmented reality
environment, and help to reduce the strain of information over-
load. The value of the interaction to end users is shown through
the NASA TLX workload surveys, task performance time, and self-
report user preference, especially in environments with significant
augmented reality information overlayed. As augmented reality be-
comes more ubiquitous, and more items seek to interact through it,
eye-gaze serves as a natural way to mediate overload. In the future,
we see an eye-gaze based information mediation interactions as a
fundamental piece of the augmented reality development toolkit.
Toolkit fundamentals, such as titles, menus, and text fields could
have a "low information" and a "high information" state, with an
eye-gaze interaction allowing users to switch between those two
modes. If this was implemented at a platform level, it would al-
low the device to naturally reduce information clutter, and prevent
overload strain on the end user.

While participants indicated they like the passive interface the
most, we saw a faster task time for the active interface. We have
a number of theories for why this might occur. The first is that
the dwell time required during the passive condition could have
negated any time saving effect from the reduced information load,
resulting in a non-significant performance improvement. We had a
few participants indicate to us that the dwell time was too long, and
they would have preferred for the information to appear quicker.
Instead of dwell time being fixed across all users, this could instead
be a preference that is either set by an end-user, or determined
automatically through some type of calibration with the end-user.
Alternatively, the preference of the passive interface over the ac-
tive interface could be related the form factor of the input device
users utilized to trigger the information shown. Having to hold an
additional device in your hands would be burdensome compared to
a hands-free interaction. A different confirmation interaction in the
“Active Condition”, such as a hand gesture or a tap on the device
could provide the necessary performance, without the burden of
having to hold a controller or additional device.

We designed these interfaces to reduce a user’s cognitive load,
but did not measure their cognitive load levels. Future studies could
record data that correlates to cognitive load, such as pupil dilation.

This study incorporated simulated drones and future studies
could investigate the effects of these interfaces when there are
physical drones performing more realistic tasks. This type of visual
search task may not be directly applicable to a real-life human-robot
teaming scenario. For instance, the gaze-based interfaces withhold
information until a user indicates a desire for more and it is possible
that user may miss important status updates.

Future work should investigate applications of these interactions
to less menu-based systems. One possible avenue is hiding the
menus until a user views the robot. We are actively investigating
gaze as feedback for robot task execution and gaze in a robotic
system to help users learn tasks and collaborate with the robot.

7 CONCLUSIONS
This paper presents investigations into gaze-based user interfaces
in Augmented Reality to allow users to supervise increasing num-
bers of robotic systems. We directed 16 participants to complete
information search tasks with a passive, gaze dwell-based method
and an active, gaze with button-press method compared to a simple
interface requiring no input from the user. Participants performed
better with both of the gaze-based interfaces as the number of sim-
ulated autonomous drones increased and preferred these interfaces
over the traditional, simple system. This investigation demonstrates
that these types of gaze-based AR systems enable users to control
information flow and find information more quickly, perhaps by
reducing their cognitive burden from when the information is pre-
sented all at once.
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A WORD BANK

Table 4: Word Bank

Adult Alarm Among Anger
Audio Baker Bench Block
Bread Cabin Cause Chair
Coach Craft Crime Crown
Dance Doubt Dozen Dream
Eagle Entry Equal Extra
Fable Final Fruit Grass
Great Guide Habit Heart
Horse Index Jacks Juice
Known Legal Limit Magic
Money Nurse Oasis Ocean
Party Pilot River Royal
Sharp Shelf Smoke Study
Tired Truck Union Urban
Voice Water World Yield

B SURVEYS
NASA-TLX Survey

• Mental Demand - How mentally demanding was the task?
• Physical Demand - How physically demanding was the task?
• Temporal Demand - How hurried or rushed was the pace of
the task?

• Performance - How successful were you in accomplishing
what you were asked to do?

• Effort - How hard did you have to work to accomplish your
level of performance?

• Frustration - How insecure, discouraged, irritated, stressed,
and annoyed were you?

Final Survey
• I found the simple interface intuitive
• I found the passive gaze interface intuitive
• I found the active gaze interface intuitive
• I think the simple interface is easy to use
• I think the passive gaze interface is easy to use
• I think the active gaze interface is easy to use
• I felt like a member of the team with the simple interface
• I felt like a member of the team with the passive gaze inter-
face

• I felt like a member of the team with the active gaze interface
• I preferred the simple interface over the passive gaze inter-
face

• I preferred the active gaze interface over the simple interface
• I preferred the passive gaze interface over the active gaze
interface

• The passive gaze system correctly identified when I looked
at a label

• I did not have to look to long at a label for it to show more
information in the passive gaze system

• The active gaze system responded when I asked to see more
information

• What did you like the best? (long form)
• Any questions about working with robots or AR? (long form)
• Any further comments? (long form)
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