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ABSTRACT
Crowdsourced clustering approaches present a promising
way to harness deep semantic knowledge for clustering com-
plex information. However, existing approaches have diffi-
culties supporting the global context needed for workers to
generate meaningful categories, and are costly because all
items require human judgments. We introduce Alloy, a hy-
brid approach that combines the richness of human judg-
ments with the power of machine algorithms. Alloy supports
greater global context through a new “sample and search”
crowd pattern which changes the crowd’s task from classify-
ing a fixed subset of items to actively sampling and query-
ing the entire dataset. It also improves efficiency through a
two phase process in which crowds provide examples to help
a machine cluster the head of the distribution, then classify
low-confidence examples in the tail. To accomplish this, Al-
loy introduces a modular “cast and gather” approach which
leverages a machine learning backbone to stitch together dif-
ferent types of judgment tasks.
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INTRODUCTION
Clustering, or pulling out the patterns or themes among doc-
uments, is a fundamental way of organizing information and
is widely applicable to contexts ranging from web search
(clustering pages) to academic research (clustering articles) to
consumer decision making (clustering product reviews) [18].
For example, a researcher may try to pull out the key research
topics in a field for a literature review, or a Wikipedia edi-
tor may try to understand the common topics of discussion
about a page in order to avoid or address previous conflicts.
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Figure 1. A conceptual overview of the system. In the first phase,
crowd workers identify seed clips to train a machine learning model,
which is used to classify the “head” of the distribution. In the second
phase, crowd workers classify the more difficult items in the “tail”. A
machine learning backbone provides a consistent way to connect worker
judgments in different phases.

Doing so involves complex cognitive processing requiring an
understanding of how concepts are related to each other and
learning the meaningful differences among them [2, 24, 29].

Computational tools such as machine learning have made
great strides in automating the clustering process [4, 10, 6].
However, a lack of semantic understanding to recognize the
important differences between clusters leaves the difficult
task of identifying meaningful concepts to the human ana-
lyst [11]. This reflects an inherent advantage for humans over
machines for the complex problem of understanding unstruc-
tured data beyond merely measuring surface similarity, and a
corresponding opportunity for research in combining human
and computational judgments to process complex informa-
tion [14, 25, 16].

One such promising avenue of research harnesses the power
of crowds to identify categories and cluster rich textual data.
Crowdsourcing approaches such as Cascade, Deluge, and
Crowd Synthesis [9, 5, 1] have demonstrated the power of
splitting up rich, complex datasets into small chunks which
can be distributed across many human coders. However, all
of these approaches must grapple with a fundamental prob-
lem: since each human coder is seeing only a small part of the
whole dataset, a lack of global context can lead to incoherent
results. For example, if the items sampled are too similar,
the worker might create overly fine-grained clusters. On the
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other hand, if the items sampled are too dissimilar, the worker
might create overly broad clusters. Clusters found in many
worker segmentation sets may give rise to redundant clusters,
while clusters whose items are sparsely split among segmen-
tation sets may never be realized at all. As an example, [1]
cite redundancies in Cascade’s top level clusters having both
“green” and “seafoam green”, “blue” and “aqua”, as well as
the encompassing category of “pastels”. While Crowd Syn-
thesis used an iterative approach to address these redundancy
problems, it trades this off with lowered robustness as issues
with early workers’ categories can cascade throughout subse-
quent workers’ judgments. This suggests the design space of
approaches for crowd clustering may be being critically lim-
ited by the assumption of splitting up the dataset into small,
fixed pieces that prevent workers from gaining a more global
context.

Another challenge with current crowd clustering approaches
is that using human judgments to label each piece of data is
costly and inefficient. Deluge addresses some issues with ef-
ficiency, improving on Cascade by reducing the number of
human judgments elicited as the rate of new category gener-
ation slows [9]. However, these crowd clustering algorithms
still require human judgments for every item, which is costly.
In the real world data often follows a long-tailed distribution
in which much of the data is captured by a small number of
categories in the head of the distribution [35]. For such data in
which many items in the head of the distribution are likely to
be highly similar, once humans have identified the meaning-
ful categories and representative examples it would be more
efficient if a machine could classify the remaining items in
those categories. A danger with such an approach is that the
sparse categories in the tail of the distribution with few exam-
ples may be difficult to train a machine to recognize, and so
human judgments may have another important role in “clean-
ing up” low frequency categories.

This paper describes Alloy, a hybrid approach to text clus-
tering that combines the richness of human semantic judg-
ments with the power of machine algorithms. Alloy improves
on previous crowd clustering approaches in two ways. First,
it supports better global context through a new “sample and
search” crowd pattern which changes the crowd’s task from
classifying a fixed subset of items to actively sampling and
querying the entire dataset. Second, it improves efficiency
using initial crowd judgments to help a machine learning al-
gorithm cluster high-confidence unlabeled items in the head
of the distribution (prominent categories), and then uses later
crowd judgments to improve the quality of machine cluster-
ing by covering the tail of the distribution (edge cases and
smaller categories). To achieve these benefits, Alloy intro-
duces a novel modular approach we call “cast and gather”
which employs a machine learning backbone to stitch to-
gether different types of crowd judgment tasks. While we
provide a particular instantiation of the cast and gather ap-
proach here (with a hierarchical clustering backbone which
gathers three types of crowd tasks, or “casts”), the general
framework for modularizing multiple types of human judg-
ments with a common machine-based backbone may inspire
application to other contexts as well.

RELATED WORK
Document and short text classification are well researched
topics in natural language processing and machine learning.
With enough labeled training data, state-of-the-art algorithms
can often produce good results that are useful in real world
applications. Yet building such systems often requires ex-
pert analysis of specific datasets both to manually design an
organization scheme and to manually label a large set of doc-
uments as training data. Unsupervised approaches, or cluster-
ing, aim to discover structures on-demand and without expert
preparation [17, 15, 32]. While these data mining approaches
may discover dimensions (features) that provide a good sepa-
ration of the dataset, the inferred categories can be difficult for
a human to interpret, and many of them may not capture the
most meaningful or useful structure in a domain due to high
dimensionality or sparseness in the word vector space [2, 24].
To deal with these issues, researchers have explored ways to
automatically discover topical keywords that can help iden-
tify useful categories in unstructured data such as TF-IDF, la-
tent semanic analysis, and latent Dirichlet allocation [28, 20,
12, 4]. However, even with these improvements, automatic
methods often still perform poorly, especially when the num-
ber of document is small, the lengths of the documents are
short, or when the information is sparse.

More recently, researchers have begun to use crowds to orga-
nize datasets without predefined categories. Cascade [9] at-
tempts to address abstraction and sampling problems by first
having multiple workers generate categories for each item
and then later having workers choose between them. By pro-
viding limited context to each worker (8 items or 1 item with
5 categories), it suffers from categories that can have varying
levels of specificity. As a follow up study, Deluge [5] pro-
duces comparable results, but with significantly lower cost
by optimizing its workflow using machine algorithms. In an-
other line of research, Crowd Synthesis [1] showed that pro-
viding more context by simply showing more items can lead
to significant better categories, suggesting that global context
is one of the key elements for crowd clustering algorithms.
In general, most current systems provide context by showing
a small sample of items, hoping that they captures the distri-
bution of information in the larger dataset. We propose an
alternative approach that builds up workers’ mental models
by asking them to repeatedly sample for new items, identify
discriminative keywords, and search the dataset for similar
items, taking advantage of people’s capacity of information
foraging [30].

A complementary set of approaches to crowd clustering re-
search has focused on addressing the scaling problem through
computation, applying approaches such as partial clustering
[37], learning similarity metrics through triad-wise compar-
isons [33], or using matrix completion to reduce the number
of labels needed from workers [38]. While these approaches
have shown to be powerful on simple information such as im-
ages or travel tips, synthesizing more complex information
can be difficult without providing novice crowdworkers with
richer context or opportunities to deeply process the data.
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Figure 2. The interface and steps of the Head Cast HIT.

ALLOY
The Alloy system clusters a collection of clips, or short text
descriptions (Figure 3), using a machine learning backbone
that gathers various judgments from human workers. In our
terminology, each human task is a “Cast” for human judge-
ments which are then “Gathered” together with the machine
learning backbone. Alloy enables Casts (here, crowdworker
tasks) of different types and in different orders to be fused to-
gether by calling a Gather after each one. In each Cast stages,
arbitrary number of workers can be hired for better robustness
or lower cost. In this paper we present three types of Casts
with different purposes as well as one type of Gather. At a
high level, the “Head Cast” is aimed at finding common cat-
egories in the head of the distribution, while the “Tail Cast”
is aimed at classifying categories in the tail of the distribu-
tion for which machine clustering has low confidence. The
“Merge Cast” aims to clean up existing categories by com-
bining highly similar categories. We also describe a Gather
Backbone that fuses the judgements from multiple crowd-
workers, and connects multiple casts to form complete work-
flows. For ease of exposition we introduce each component in
the context of a typical workflow: the Head Cast, the Gather,
the Merge Cast, and the Tail Cast.

The Head Cast
The Head Cast aims to identify salient keywords to uncover
the most common categories in the head of the distribution.
Doing so involves challenges in providing workers sufficient
context to know what a good category is, and also in how
to structure their work process in order to train a machine
learning algorithm to take over the classification of categories
based on human-identified seeds and keywords. Previous
studies show that presenting multiple items from a collection
can help provide context to human workers [13], increasing
the likelihood of obtaining better clusters. However, it can
be difficult to determine how much context is sufficient and
how to produce a good sample that captures the distribution
of information of the whole dataset. Therefore, we introduce
a new crowd-pattern we call “sample and search” for pro-
viding global context through active sampling and searching
with keywords. We ask crowdworkers to identify coherent
categories by presenting with four random items, but allow-

ing them to replace each item by random sampling from the
entire dataset until they are confident that the items will be in
different categories in the final output. This requirement gives
them the motivation to build up better global understanding
of the dataset through repeated sampling. After obtaining the
four seed items, we ask crowdworkers to identify keywords
in each clips to search for related items in the dataset. This
process takes advantage of people’s capacity of finding new
information [30]. To create a familiar experience, we allow
the workers to freely change their query terms and update the
search results in real time. This way they can refine their
searches based on the results, the same way as when con-
ducting online information foraging tasks [19]. As shown in
Figure 2, the Head Cast HIT interface consists of three steps:

1. Finding seeds: Four random seed clips are presented to
each crowdworker. Over each clip, there is a button that
allows them to replace the clip with another random clip
from the dataset. They are then asked to replace any clips
that are too similar to the other seed clips. The workers
repeatedly replace the seed clips until the four clips at hand
belong to four different answer categories.

2. Highlighting keywords: The crowdworker is then in-
structed to highlight one to three unique keywords from
each of the four seed clips that best identify their topics.

3. Search and label: For each seed clip, we automatically
search for similar clips from the entire corpus based on the
highlighted keywords and TF-IDF cosine similarity. The
crowdworker is asked to label the top nine search results as
similar to or different from their seed clips.

In Step 1, the crowdworkers need some understanding of
the global context before they can confidently judge that the
seeds belong to different categories in the final output. Previ-
ous work usually address this problem by presenting multiple
items to each crowdworker, in hopes of sampling both similar
and dissimilar items to give some sense of the global context.
In reality it could be difficult to judge how many items is suf-
ficient for different datasets, and overly small size could lead
to bad samples that are unrepresentative of the global distribu-
tion. We took a different approach by presenting fewer items
at first, but allowing workers to replace the seeds with random
clips from the dataset. This provide them both the mechanism
and motivation to explore the dataset until they have enough
context to find good seed clips.

The intuition behind Step 2 is that people are already famil-
iar with picking out good keywords for searching documents
related to a concept via their online information seeking expe-
riences. In addition, requiring them to highlight unique key-
words in the seeds first, further ensures that they are familiar
with the concepts in the seed clips, before they search for
similar items. In Step 3, the crowdworkers can still change
and refine their highlights from Step 2, and the system will
refresh the search results in realtime. This gives the crowd-
workers both the motivation and mechanism to extract better
keywords that lead to better search results to label. In Fig-
ure 3, we show two example clips from the datasets collected
using the two questions: How do I get my tomato plants to
produce more tomatoes? and What does a planet need to
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support life? The highlighted words in each clips are the
keywords selected by one of the crowdworkers, showing that
workers are finding useful words for classification.

Tomato seedlings will need either strong, direct

sunlight or 14-18 hours under grow lights . Place

the young plants only a couple of inches from florescent
grow lights. Plant your tomatoes outside in the sunniest
part of your vegetable plot.

In its astrobiology roadmap, NASA has defined the
principal habitability criteria as "extended regions of

liquid water , conditions favourable for the assembly of

complex organic molecules, and energy sources to sustain
metabolism

Figure 3. Example clips from two datasets with crowd keywords.

To learn a similarity function between clips, we use the crowd
labels and keywords to train a classifier that predict how likely
two clips to be labeled as similar. Although the judgments
from workers via the HIT interface about which clips go
together provide valuable training information, we need to
leverage these judgments to bootstrap similarity judgments
for the clips that they did not label and to resolve potentially
conflicting or partial category judgments. To do so we trained
an SVM classifier in real-time to identify the set of keywords
that are most indicative of categories and predict whether two
clips in the dataset belonged to the same cluster. The training
events are all possible pairwise combinations of clips in the
clusters obtained with the HIT interface, which may include
both positive (similar) and negative (different). The feature
dimensions are all the keywords highlighted by the crowd-
workers, and the value of each dimension is the product of
the number of times that keyword occurred in the two clips.
In general, the keywords labeled by the crowdworkers contain
little irrelevant information compared to all words in the clips,
but there could still be some highlighted words that are not in-
dicative of a category. For example, one crowdworker worked
on the dataset for “How do I unclog my bathtub drain?” la-
beled “use”, “a”, and “plunger” as three keywords. Even
though plunger is a very indicative feature for clustering this
dataset, the first two highlighted words seem too general to be
useful. Using a linear kernel to estimate the weights for the
different dimensions (i.e., keywords) seems well suited for
our purpose [7, 36]. Further, if the same keyword is used by
different crowdworkers but lead to very different labels, the
linear SVM model will give lower weight to the correspond-
ing dimention and thus lower the effects of keywords that are
less indicative of the categories. We use LIBSVM which im-
plements a variant of Platt scaling to estimate probability [27,
31]. The overall intuition is that the SVM classifier is doing a
form of feature selection, weighting those words in clips that
could maximally distinguish clips amongst clusters.

In a preliminary experiment, we tested using all words in
the clips as features to train the SVM model. The intuition
is machine algorithms might do a better job at identifying
keywords that can outperform keywords identified by crowd-
workers. However, the results show that using all words as
features did not yield better results, and having much higher
feature dimensions increases the training time significantly.

Figure 4. The HITs for Merge Cast: Naming and merging existing clus-
ters and Tail Cast: Clustering remaining clips.

Finally, with the probability output of the SVM model as a
similarity function between clips and a stopping threshold of
0.5 probability, we use a hierarchical clustering algorithm that
serves as the Gather Backbone to capture head clusters.

Gather Backbone: Hierarchical Clustering
Using a multiple-stage approach with different types of mi-
crotasks can make it difficult to fuse together the different
crowd judgements to form a coherent result. A key element
to our approach in casting for category judgments in differ-
ent ways is that we have a unifying mechanism to gather
them back together. For example, throughout our process we
cast for human category judgments in very different ways, in-
cluding having people identify seed clusters (the Head Cast),
merge duplicated categories (the Merge Cast), and classify
the tail of the distribution (the Tail Cast). Instead of creat-
ing ad-hoc links between these judgments we propose using a
unifying gathering mechanism composed of a machine learn-
ing backbone which translates the different casted judgments
into similarity strengths used as the basis of clustering. We
believe this Cast and Gather pattern may be useful as a way
to conceptualize the relationship between machine algorithms
and crowd judgments for a variety of tasks.

To build a complete clustering workflow with multiple casts,
we use a hierarchical clustering algorithm as the backbone
that connects different casts. More specifically, the backbone
algorithm fuses the judgements from different crowdworkers
working on the same cast into clusters, which, in turn, become
the shared context transferred to the next cast of the workflow.

With a clip similarity function from the prior cast and a stop-
ping threshold, the hierarchical clustering method initially
treats each clip as a cluster by itself, and iteratively merges
the two most similar clusters until a threshold is reached. The
result is a partially clustered dataset with clusters and single-
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tons. When the backbone is used after the last cast in the
workflow, each singleton is then merged into the most similar
cluster. The similarity between two clusters is defined as:

ClusterS im(ω1, ω2) =
1

|ω1||ω2|

∑
t j∈ω1

∑
tk∈ω2

ClipS im(t j, tk) (1)

where ω1 and ω2 are the two clusters, t j and tk are each of the
clips in ω1 and ω2, respectively, and the ClipS im() function
is the given similarity function between clips.

The Merge Cast
While the Head Cast is designed to find the large clusters in
the head of the distribution, since each crowdworker works
independently, some of those clusters may actually be differ-
ent subsets of the same larger category or the same categories
based on different keywords (e.g., sunlight vs natural light-
ing). The Merge Cast is designed to consolidate existing clus-
ters by merging duplicated categories. The input to this cast is
a set of clusters that may or may not cover the entire dataset,
and the output is fewer or equal number of clusters each with
a list of ranked short descriptions. The challenge with de-
tecting duplicate categories is that people need to understand
what is in each category first. We start by presenting a set
of existing clusters, and asking crowdworkers to name each
of them. This acts as a defensive design[21] that ensures the
crowdworkers understand the current context (scope and ab-
straction level), and also to obtain short descriptions for each
of the clusters. Crowdworkers are then asked to merge iden-
tical categories by dragging them into the placeholders on the
right (Figure 4).

If there are too many head clusters to fit into a microtask, the
Merge Cast can be run recursively by first running on disjoint
sets of existing clusters to consolidate them independently.
Then, run another sets of Merge Cast on the output of each
initial Merge Casts, and recurse until the output reduces to a
set of clusters that could be presented in a global Merge Cast
to ensure consistency. The assumption here is that the set of
clusters in the final output of Alloy should be manageable by
a single person to be useful. We also wanted to point out that
the number of clusters is likely to scale much slower than the
size of the dataset for many real-world data.

With the labels from the crowdworkers, we will again use the
Gather Backbone to combine the judgements. The goal is to
merge existing clusters if more than half of the crowdworkers
also merged them in their solutions. Since in the Merge Cast
workers can not break up existing clusters or reassign clips,
we can formulate the clip similarity function as:

ClipS im(t1, t2) =
1
N
|{ω : t1, t2 ∈ ω and ω ∈ Ω}| (2)

where t1, t2 are the two clips, N is the total number of crowd-
workers, Ω is the set of all clusters created by all crowdwork-
ers, andω is any cluster that contains both clips. This function
is robust against a few workers doing a poor job. For example,
if one crowdworker assigned every clip in the dataset to a sin-
gle, general cluster (e.g., answers), the effect to the similarity
function would be equivalent to having one less crowdworker

and applying Laplacian smoothing. It is a common concern
for crowd-based clustering methods that novice workers may
create overly abstract categories (e.g., solutions or tips), that
covers all items in the datasets. With our approach, it would
require more than half of the workers to merge all items into
a single cluster to generate a single cluster in the output.

From the output of the Gather Backbone, we rank the short
descriptions associated with each cluster. Since clips are la-
beled by multiple crowdworkers, each cluster is associated
with multiple descriptions via its clips. We use the F1 metric
to rank these names to find the most representative descrip-
tion for each cluster, where the precision of a name label is
defined as the number of clips in the cluster that it associates
with divided by the size of the cluster, and recall as divided
by the total number of clips associated with it.

The Tail Cast
The Tail Cast is designed to clean up the remaining single-
ton clips by classifying them into existing clusters or creating
new clusters. The intuition is that even though machine learn-
ing techniques can produce high performance output, some-
times it is achieved at the expense of sacrificing the border
cases. Human-guided “clean up” is often necessary for data
produced by a machine learning model. The input of this cast
is a set of existing clusters (with or without short descriptions)
and a set of remaining clips. The output is a set of clusters
with short descriptions.

We use an interface similar to the Merge Cast (Figure 4), and
asked crowdworkers to review or name each of the existing
clusters first, so that they build up better global understand-
ing of the dataset before they organize the remaining clips. If
Merge Cast was performed previously, their names are pre-
sented to lower cognitive load. The crowdworkers are then
instructed to cluster the unorganized clips shown on the right
by assigning them into existing clusters, creating new clus-
ters, or removing uninformative clips. If there are too many
remaining clips to fit into a single microtask, they are par-
titioned into groups of 20 items. Even though we may be
dividing the remaining clips into partitions, all workers in the
Tail Cast starts with learning the same global context that is
the set of existing clusters from the Head Cast.

Finally, we use the Backbone Gather again to combine the
multiple solutions from the crowdworkers. The goal is anal-
ogous to the goal of the Merge Cast: if two clips are assigned
to the same category by more than half of the crowdworkers,
they should be in the same cluster in the combined solution.
For the similarity function, we simply replace the variable N
in Equation 2 by the degree of redundancy.

EVALUATION METRIC
Unlike evaluating a classification task, which would typically
be based on the precision and recall of pre-defined classes,
evaluating clusters is not as straightforward due to the poten-
tially different number of classes in the gold-standard and the
system output. For example, high precision can be achieved
by simply having more clusters in the output and the map-
ping between them. To address this, we use the normalized
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Dataset # sources # workers # clips bad clips # clusters
Q1:How do I unclog my bathtub drain? 7 16 75 25% 8
Q2:How do I get my tomato plants to produce more tomatoes? 18 13 100 10% 8
Q3:What does a planet need to support life? 19 19 88 31% 7
Q4:What are the best day trips possible from Barcelona, Spain? 12 12 90 18% 16
Q5:How to reduce your carbon footprint? 20 11 160 14% 11
Q6:How do I unclog my bathtub drain? 17 23 159 14% 11
Wiki: Talk page sections for the Wikipedia Hummus article N/A N/A 126 0% 13
CSCW: Abstract sections of CSCW 2015 accepted papers N/A N/A 135 0% 45

Table 1. Datasets used for evaluation

mutual information metric (NMI), which is a symmetric mea-
surement sensitive to both the number of clusters, and the
precision of each cluster. Specifically, it compares all pos-
sible cluster mappings to calculate the mutual information,
and normalizes by the mean entropy so that the numbers are
comparable between different datasets:

NMI(Ω,C) =
I(Ω,C)

0.5 ∗ [H(Ω) + H(C)]
(3)

where Ω is the output clusters and C is the gold-standard clus-
ters. The mutual information I is defined as:

I(Ω,C) =
∑

k

∑
j

P(ωk ∩ c j)log
P(ωk ∩ c j)
P(ωk)P(c j) (4)

where ωk and c j denotes each of the clusters in Ω and C, re-
spectively. The probability P(ω) of item set ω is defined as
|ω|/N, where N is the number of total items. Finally, the mu-
tual information is normalized by the mean entropy of Ω and
C, so that the scores are comparable across datasets. To give
some intuition, given w that maps to a gold-standard clus-
ter c, we can calculate the precision by P(w ∩ c)/P(w) and
recall by P(w ∩ c)/P(c), and the metric considers both with
P(w ∩ c)/P(w)P(c). However, in reality it may be difficult to
obtain such mappings, and the metric simply sums up scores
of all possible mappings weighted by probability P(w ∩ c).

We use NMI for it is widely found in the literature for cluster-
ing evaluation. A more recent study found that it might favor
datasets with more clusters, and proposed a variant that ad-
justs for randomness (AMI, [34]). We acknowledge this is a
potential limitation, but found that the number of clusters Al-
loy produced were quite close to the gold-standard (average
10.3 vs 10.2), suggesting the concerns may be minimized. To
be on the safe side, we also measured Alloy’s performance
using AMI on two datasets and found similar results.

DATASETS
In order to evaluate Alloy, we compared it to other machine
learning and crowdsourcing clustering approaches in three
different contexts: information seeking, Wikipedia discus-
sions, and research papers. These contexts all involve rich,
complex data that pose challenges for automated or existing
crowd approaches. Below we describe each dataset and how
we either generated or collected gold-standards.

Information Seeking Datasets
We picked five questions asked on popular Q&A forums (e.g.,
Quora, reddit, and Yahoo! Answers) that covered a diverse

range of information needs. We then posted these questions
to Amazon Mechanical Turk (AMT), and asked each crowd-
worker to find 5 webpages that best answered the questions
in Table 1. The top sources were sent to workers to high-
light clips that would help answer the question via an inter-
face similar to that described in [22]. The first four datasets
(Q1 to Q4) collected consist of 75 to 100 clips, extracted from
7 to 19 webpages using 12 to 19 crowdworkers. In addition,
we also collected two datasets with more than 150 clips (Q5
and Q6) by gathering more clips from the sources.

To generate gold standards, two graduate students clustered
each dataset independently. Raters were blind to Alloy’s clus-
ters, and no discussion on clustering strategies nor predefined
categories were made prior to the process. Raters initially
read every item in the dataset to build global understanding
before they started organizing. Conflicts between raters were
resolved though discussion. The first author participated in
labeling two (out of the seven) datasets, but was always paired
with another annotator outside of the research group. To mea-
sure inter-annotator agreement, we used the symmetric NMI
metric as described in the previous section.

The agreements between raters are shown in Table 2. The
datasets for “How do I unclog my bathtub drain?”, “How do I
get my tomato plants to produce more tomatoes?” and “What
are the best day trips possible from Barcelona?” had high
agreement between the two annotators of 0.7 to 0.75 NMI.
For the “What does a planet need to support life?” dataset,
the agreement was significantly lower (0.48). We kept this
dataset to show the limitations of the proposed method, and
we will discuss further in later sections. For the two larger
datasets Q5 and Q6, the agreement scores were around 0.6.

Research Papers
Since some of the questions in the above dataset were about
common daily life problems, an open question is whether
crowd judgements were based on workers’ prior knowledge
or the context we provided them. To evaluate the system us-
ing more complex data where workers would likely have lit-
tle prior knowledge we turned to research papers from the
2015 CSCW conference. For this dataset we used the offi-
cial conference sessions as the gold standard for evaluation.
The intuition is that conference organizers would place sim-
ilar papers together in the same session. We acknowledge
that the objectives of organizing conference sessions are not
entirely the same as Alloy; most notably, conference session
planning requires schedule conflict resolution and fixed size
sessions. However, session co-occurrence represents valuable
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judgments from experts in the community about which pa-
pers belong to a common topic, and even though each cluster
is smaller in size (e.g., 3-4 papers per session) we can look at
whether papers put together by experts are also put together
by Alloy and the other baselines [8].

Wikipedia Editor Discussion Threads
Wikipedia relies on its editors to coordinate effectively, but
making sense of the archives of editor discussions can be
challenging as the archives for a single article can consist of
hundreds or thousands of pages of text. We use as a dataset
the discussion archives of the Hummus article, a popular yet
controversial article, and use the discussion threads as the
set of documents. The talk page consists of 126 discussion
threads about various issues of the main articles that spans
over the past 10 years (Table 1). Two annotators read the
main article and the full talk threads before they started the
labeling process. The NMI score between the two annotators
was .604, which is comparable to the two other large datasets
Q5 and Q6.

Wikipedia data can be more difficult to organize than previ-
ously mentioned datasets, because it can be organized in very
different ways, such as topics, relations to the main article
sections, and mention of Wikipedia guidelines [1]. The an-
notators also had a hard time coming up with a gold standard
through discussion, and found both their categorization solu-
tions to be valid. Therefore, instead of creating a single gold
standard, we report the NMI scores between Alloy’s output
and each of the annotators.

EXPERIMENT OVERVIEW
In the following sections, we will describe three experiments
and their results. Two workflows that uses the Gather to con-
nect the different Casts are tested. The first experiment is
an external evaluation that compares Alloy with other ap-
proaches. We use the full workflow that consists of the Head
Cast, the Merge Cast, and the Tail Cast to cluster the six infor-
mation seeking datasets (Q1-Q6), and compare with previous
crowd-based methods and four machine algorithm baselines.
The second experiment is an internal evaluation that tests the
robustness of Alloy by using different number of workers in
the Head Cast and the Tail Cast. Finally, in our last experi-
ment, we test Alloy’s performance on two different types of
datasets: Wikipedia editor discussions and research papers.

EXPERIMENT 1: EXTERNAL VALIDATION
We first look at how Alloy compares with machine algo-
rithms, other crowd algorithms, and inter-expert agreements.
In the Head Cast, crowdworkers highlight keyword and clus-
ter similar clips via searching, and in the Tail Cast another set
of crowdworkers organizes all remaining clips.

We compare this Workflow 1 to three baselines that are com-
monly used in the clustering literature: latent Dirichlet Allo-
cation (LDA) [4], latent semantic analysis (LSA) [12], and
TF-IDF [28, 20]. We also compare against a hybrid baseline
that uses human-identified keyword vectors from the Head
Cast. This aims to test the value of the approach beyond the
human identification of keywords by trying to cluster using

only the keywords. In addition to comparing against auto-
matic methods, we also compare Alloy to a popular crowd
based method. The evaluation conditions are summarized be-
low:

• Workflow1. The workflow with ten crowdworkers each for
the Head Cast and the Tail Cast for Q1-Q4. An additional
five workers for the Merge Cast for Q5-Q6. Each HIT costs
1 USD.
• TF-IDF. Weighted cosine similarity as the similarity func-

tion for the Gather. No human-computation was employed.
• Crowd keywords. Cosine similarity based on worker-

highlighted keywords from the Head Cast as the similarity
function for the Gather.
• LSA. The LSA model is used as the similarity function for

the Gather. No human-computation was employed.
• LDA. The LDA topic model is used as the similarity func-

tion for the Gather. No human-computation was employed.
• Cascade. A version of Cascade with only one recursion

using the default parameters as described in the paper.

Results
Alloy introduces a novel approach for providing context in
the microtask setting with the sampling mechanism in the
Head Cast. We captured crowdworkers’ behavior during the
tasks and found that nearly all (97.5%) workers used the
sampling mechanism to gain context beyond the initial four
items. On average, each worker sampled 15.1 items , and
more specifically, 11.3% sampled more than 25 items, 23.8%
sampled 15~24 items and 62.5% sampled 5~14 items.

Comparing with Machine Algorithms
On average, the proposed method performed significantly
better and more consistent than all machine baselines (Ta-
ble 2). In the worst case, Alloy clusters measured 0.058 NMI
lower than the inter-annotator agreement, while the baseline
systems measured more than 0.1 NMI lower in most cases.
In a few cases some baselines also performed well (e.g., LSA
performed slightly better on Q5), but none of them produced
good results consistently across all datasets. Compared to the
gold-standard clusters, Alloy produced clusters about as close
to the gold-standard clusters as the two human annotators
were to each other, despite the judges’ advantages of having
a global view of the datasets and multiple rounds of reading,
labeling, and discussion. In addition, worker-identified key-
words consistently outperformed TF-IDF, showing that the
crowdworkers are extracting keywords in the Head Cast that
are salient for identifying clusters each dataset. On the two
larger datasets (Q5 and Q6), Alloy achieved similar perfor-
mance as the four smaller datasets; better and more consistent
comparing to the baseline systems, and near experts agree-
ment comparing to the gold-standard.

Note that for every machine algorithm baseline we explored
multiple parameters for each of the four questions, (hyper-
parameters, number of topics, stopping threshold), and report
the highest scores. The results of the baseline algorithms are
likely over-fitting to the data, but we wanted to compare Alloy
to these algorithms under their best possible settings [10].
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Dataset Inter.annot. Workflow1 Workflow2 TF-IDF Keywords LSA LDA
# of clusters

Alloy expert
Q1 .734 .759* σ=.033 .550* σ=.093 .510 .647 .512 .478 7 8
Q2 .693 .687* σ=.016 .467* σ=.046 .534 .562 .537 .506 8 8
Q3 .477 .468 .425 .390 .440 .467 .442 7 7
Q4 .750 .727 .633 .673 .676 .704 .603 14 16
Q5 .630 .576 - .568 .508 .582 .551 16 11
Q6 .588 .588 - .462 .492 .497 .456 10 11

Average .645 .634 - .523 .554 .550 .503 10.3 10.2
CSCW - .748 - .584 .652 .691 .725 23 45

Table 2. Evaluation Results. * indicates mean of 11 runs using different workers.1

Figure 5. Categories comparison for Q1

Comparing with Previous Crowd Methods
We compare Alloy with Cascade using datasets Q1-Q4, a
popular crowd-based method for discovering taxonomies in
unstructured data based on overlapping crowd clusters [9].
We implemented a simplified version of Cascade using the
parameters described in the paper, but with only one recur-
sion. We acknowledge that fine tuning and multiple recursion
might improve Cascade’s performance, but the numbers from
our evaluation are consistent with the results reported in the
Cascade paper based on the same metric and similar datasets.

On average, 84% of categories generated with Alloy were
shared with clusters in the gold standard, versus 50% for Cas-
cade. Cascade produced soft clusters where child clusters did
not necessarily have all the items included in their parents,
which breaks the assumptions of using NMI. To produce a di-
rect comparison, we use the gold standard to greedily extract
best matching, overlapping clusters that cover all items, and
evaluated them using the average F1. In essence, this simu-
lates an omniscient “oracle” that gives Cascade the best pos-
sible set of cluster matches, and so is perhaps overly generous
but we wanted to err on the conservative side. The average F1
scores for each questions using Alloy are .72, .54, .48, .52,
and using Cascade are .50, .48, .42, .39, showing a consistent
advantage across questions. Furthermore, Alloy achieved this
better performance at a lower cost (average $20 for Alloy vs
$71 for Cascade), suggesting that machine learning can pro-

vide valuable scaling properties. We show categories created
by experts and elicited from the two systems in Figure 5 to
give a better sense of the datasets and the output.

EXPERIMENT 2: ROBUSTNESS
In this section, we examine the robustness of Alloy by vary-
ing the number of crowdworkers employed in the Head and
the Tail Cast on datasets Q1-Q4. We start with having only
1 worker in the Head Cast, and evaluate performance as we
hire more workers until we have 20. To test the two phase
assumption, in a second condition, we switch to the Tail Cast
after hiring 10 workers in the Head Cast, and continue to hire
1 to 10 more workers. This way, we can characterize the
cost/benefit trade-offs in hiring different amount of human
judgments. Further, by omitting the Tail Cast completely in
the first condition, we can verify the two phase assumption
by comparing the performance of a two-phase process (Head
Cast and Tail Cast) with a one-phase control (Head Cast only)
while equaling the number of workers:

• Workflow1. The workflow with ten crowdworkers each for
the Head Cast and the Tail Cast. Each HIT costs 1 USD.

• Workflow2. The workflow with twenty crowdworkers and
the Head Cast only. Each HIT costs 1 USD.

In addition, to test how robust Alloy is to the variance of
crowdworkers on Amazon Mechanical Turk, we also hired
eleven sets of ten different crowdworkers (a total of 440) for
each Head and Tail Casts for Q1 and Q2.

Results
In Figure 6, we show the performance of employing different
number of workers in the Head and the Tail Cast. Initially,
increasing the number of workers in the Head Cast shows
significant performance improvements. However, after gath-
ering training data from around 10 workers, the performance
gain from hiring additional crowdworkers decreases notably.
Instead, performance improved significantly even with only
a few additional crowdworkers in the Tail Cast to refine the
clusters. Overall, having 10 crowdworkers in each of the
Head and Tail Cast consistently outperformed having all 20
crowdworkers in the Head Cast across all four questions (Ta-
ble 2), suggesting there is significant value in the Tail Cast.
1We also evaluated Q1 and Q2 using the AMI metric that accounts
for randomness. The inter-annotator agreements are .674 and .643,
respectively, and Alloy performed .674 and .609, respectively. See
the Evaluation Metric Section for detail.
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Figure 6. Performance comparison of using different number of crowdworkers in the Head Cast and the Tail Cast.

For Q1 and Q2, we also ran Alloy eleven times using dif-
ferent crowdworkers, and compared the results against the
gold-standard labels and also with each other. Comparing
to the gold-standards, which have inter-annotator agreements
of .734 and .693 for Q1 and Q2 respectively, Alloy produced
an average NMI of .759 (SD=.016) and .687 (SD=.016), re-
spectively. Further, the average pair-wise NMI score of the
11 runs are .819 (SD=.040), and .783 (SD=.056), respec-
tively, suggesting Alloy produces similar results using differ-
ent crowdworkers on the same datasets.

EXPERIMENT 3: OTHER DATASETS
In this experiment, we use the same distributed workflow to
test Alloy using the Wiki and CSCW datasets as described
in the Dataset Section, in order to test how Alloy general-
izes to other types of data. These datasets contain long aca-
demic documents or editorial discourses that are infeasible
to present multiple items to the crowdworker in one HIT. In-
stead, we show a small portion of each item in the datasets
to the crowdworkers. For each item in the Wiki dataset, we
display the thread-starter post and the first two replies. For
the CSCW dataset, we present the abstract section of each
paper, and compare results with the official conference ses-
sions. Machine baselines were however given access to all of
the text of the paper and the full discussion threads in order
to provide a strong test of Alloy’s approach.

Results
For the CSCW dataset, Alloy outperformed all machine base-
line systems with .748 NMI score using conference sessions
as the gold standard Table 2. The Keyword baseline outper-
formed the TF-IDF baseline (.652 vs .584), showing that the
crowdworkers are extracting valuable keywords in the Head
Cast, despite that research papers may be difficult or impos-
sible for crowdworkers to understand. On the other hand,
Alloy produced 24 categories out of 135 abstracts, more than

all other datasets. One possible assumption is that it may be
more difficult for novice workers to induce abstract categories
when organizing expert dataset, leading to higher number of
more lower level categories in the outcome.

For the Wiki dataset, the NMI score between annotators was
.604, which is comparable to the two other large datasets Q5
and Q6. Comparing to the two sets of expert labels indepen-
dently, Alloy’s output measured .528 and .507. Compared
to all previous results, Alloy seemed to perform less favor-
ably on this dataset. As mentioned in the Dataset Section,
the raters found the this dataset the most difficult to organize,
as there are many different valid structures that the two an-
notators were unable to reach an agreement also hints that
the space of valid solutions may be larger on this dataset. In
addition, we only showed the first three comments of each
discussion to the crowdworkers, whereas the annotators and
the machine baselines have access to the full discussion. We
acknowledge length of items is a limitation, and will discuss
in detail in the Discussion Section.

DISCUSSION
In this paper, we took a step towards tackling the prob-
lem of clustering high-dimensional, short text collections by
combining techniques from natural language processing and
crowdsourcing. By using a two-phase process connected by
a machine learning backbone, our proposed method com-
pensates for the shortcomings of crowdsourcing (e.g., lack
of context, noise) and machine learning (e.g., sparse data,
lack of semantic understanding). As part of the system we
introduced an approach aimed at providing greater context
to workers by transforming their task from clustering fixed
subsets of data to actively sampling and querying the entire
dataset.

We presented three evaluations that suggest Alloy performed
better and more consistently than automatic algorithms and
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a previous crowd method in accuracy with 28% of the cost
(Exp.1), is robust to poor work with only 20 workers (Exp.2),
and is general enough to support different types of input
(Exp.3). Qualitatively, we noticed Alloy often produced bet-
ter names for categories than machine algorithms would be
capable of, including names not in the text (e.g., a cluster in-
cluding items about smart thermostats and solar panels was
named “Home Improvements” which was not in the actual
text).

One potential concern might be whether Alloy’s tasks take
too long to be considered microtasks. While Alloy deploys
HITs that take more than a few seconds to finish, we think
they are still comparable to other complex microtask systems
such as Soylent [3] and CrowdForge [23]. Specifically, based
on a total of 281 HITs, the median run-time for the Head Cast
HITs is 7.5 minutes (M=8,3, SD=4.1), for Merge Cast 8.3
minutes (M=16.2, SD=15.6), and for Tail Cast 11.4 minutes
(M=13.2, SD=6.1). Despite having less workers doing longer
tasks, Alloy performed consistently across different sets of
workers on the same datasets.

During development, some assumptions, both explicitly and
implicitly, were made about the input of the system: 1) there
are more clips than categories. 2) the categories follow a
long-tailed distribution. 3) clips belong to primarily one clus-
ter. 4) there is a small set of gold-standard clusters. 5) work-
ers can understand the content enough to cluster it. Note that
we do not assume the crowdworkers can understand the se-
mantics of the content, but just enough to identify ideas that
are salient and common in the dataset. Thus they may be
able to cluster complex topics such as machine learning with-
out understanding those topics if enough relational context is
embedded in the clips. For example, an abstract of a research
paper may say “this paper uses POMDP machine learning
approaches to cluster text”, they might put it in a “clustering”
cluster without knowing what a POMDP is.

One obvious limitation to our approach is clustering long doc-
uments. This is a common limitation for crowd-based sys-
tems that rely on workers reviewing multiple items for con-
text (either from random selection or active sampling). It be-
comes infeasible to fit multiple items in a single HIT if the
length of each item is long. Another related limitation is or-
ganizing documents that describe multiple topics. Lab studies
in a past work [22] showed that individuals are able to decom-
pose long documents into short clips of single topics during
information seeking tasks. One way to expand the proposed
method to overcome the length limitation could be splitting
documents into short snippets, either with the crowds or ma-
chine algorithms, and create topical clusters using Alloy.

Another limitation is organizing datasets that are inherently
difficult to structure categorically. For example, concepts in
Q3 (planetary habitability) have causal relationships without
clear categorical boundaries (e.g., distance to sun, tempera-
ture and liquid water). As a result, all approaches had signif-
icant trouble, including low agreement between human anno-
tators. On the other hand, some dataset can be organized cat-
egorically in multiple ways. In Q4 (Barcelona) we found that
some categories fit a place schema (e.g., Sitges, Girona) while

other categories fit a type schema (e.g., museums, beaches).
One approach for addressing this could be trying to cluster
workers to separate the different kinds of schemas; however,
upon inspection we found that individual workers often gave
mixtures of schemas. This interesting finding prompts fur-
ther research to investigate what cognitive and design features
may be causing this, and how to learn multiple schemas.

Looking forward, we identified a set of patterns that may be
useful to system designers aiming to merge human and ma-
chine computation to solve problems that involve rich and
complex sensemaking. The hierarchical clustering backbone
we use to integrate judgments from a variety of crowdworker
tasks allows us to cast for different types of crowd judgments
and gather them into a coherent structure that iteratively gets
better with more judgments. We also introduce useful new
patterns for improving global context through self-selected
sampling and keyword searching. One important considera-
tion these patterns bring up is that while previous ML-based
approaches to crowd clustering have focused on minimizing
the number of judgments, we have found it is at least as im-
portant to support the rich context necessary for doing the task
well and setting up conditions that are conducive for crowd-
workers to induce meaningful structure from the data.

We hope the patterns described in this paper can help re-
searchers develop systems that make better use of human
computation in different domains and for different purposes.
For example, the sample and search pattern could potentially
be adapted to support other tasks such as image clustering,
where crowdworkers could use the sampling mechanism to
get a sense of the variety of images in the dataset, highlight
discriminative objects, and label images queried based on fea-
tures extracted from the highlighted regions. Furthermore,
the cast and gather pattern may provide a useful framework
for combining crowds and computation that is both descrip-
tive and generative. For example, Zensors [26], a crowd-
based real-time video event detector, could be considered a
form of the cast and gather pattern which uses a classification
algorithm instead of a clustering algorithm as a backbone, and
casts for human judgements whenever its accuracy falls be-
low a threshold (e.g., if an environmental change lowers pre-
cision), with the classifier backbone retrained with the new
human labels. While we used a clustering backbone in this
work, future system designers might consider other machine
learning backbones (e.g., classification or regression algo-
rithms) for different tasks. Overall, we believe this approach
takes a step towards solving complex cognitive tasks by en-
abling better global context for crowd workers and providing
a flexible but structured framework for combining crowds and
computation.
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